Countries in the Sky

A spot on Earth is a spot in the sky.

Every “spot” on Earth has a corresponding “spot” in the sky. For instance, on the spot where you are now, directly overhead, is the zenith. There is only one zenith where you stand. No two spots share the same zenith. Every spot on a sphere “points to” a different location in the sky. Nobody shares your zenith.

Your Zenith is Unique

Imagine the boundary of your country as a set of these spots. These locations can be projected onto the celestial sphere. Projecting shapes of countries onto the sky can help you really “see” how large or small a country is. Seeing countries from the inside out helps to understand the shape of the Earth as a sphere.

That Star is Someone’s “First Star I See Tonight.”

When you see a star rising you are actually seeing a star that someone 6 timezones east of you sees directly overhead.

Sirius rises just before dawn (heliacal rising) in mid August (at latitude 40˚N). It rises earliers and earlier each day until by November it is rising at midnight. When people on the east coast of the USA see Sirius rising, people in Western Europe see the same star Sirius high in the sky at the meridian.

Super Simple Earth Model

Super Simple Earth Model

Physical Astronomy by Daniel Cummings

Stand outside on a sunny day or in a room with only one light. If you are inside the light should be at eye level when you are standing up. This will be your Sun.

Stand up, make sure there is space around you – things might get messy if you start spinning like the earth and there are things to bump into.

Turn to the left and begin a slow leftward spin. This is the direction that the Earth rotates (as “seen” from above the north pole).

Your head is like the earth. Your eyes are like two different people on the surface of the earth. They are looking straight out from the earth toward the sun.

As you spin in your leftward rotation, wink your left eye shut. Observe how your left eye can see the light before your right eye. This is like the east and west coasts of the USA. The east coast is a few hours ahead. Observe how when you continue to spin and your eyes turn away from the light source it is like night.

Spin a few times more to feel yourself as the Earth model. 29-31 spins makes a month. 365 spins makes a year. Multiply your age in years by 400 and that’s about how many days you’ve been riding on the earth – give or take a few hundred.

Constellations of the Zodiac in Order

Learning the Zodiac constellations in order is a great way to get familiar with the ecliptic and the celestial sphere. The Zodiac is not just for astrology – astronomers use the constellations of the Zodiac to name 13 regions of the sky.

Zodiac Constellations zoomed in on Ophiuchus – the “13th” Zodiac Constellation between Sagittarius and Scorpio. The constellation borders (marked red) show how astronomers divide up the sky into named regions.

Zodiac Constellations List

These are the Zodiac constellations in the correct order from Aries to Pisces.

OrderMnemonicNameDescriptionEmojis
1AllAriesRam♈ 🐏
2TheTaurusBull♉ 🐄
3GreatGeminiTwins♊ 👯‍♂️
4ConstellationsCancerCrab♋ 🦀  
5LookLeoLion♌ 🦁
6VeryVirgoVirgin♍ 👰
7LovelyLibraScales♎ ⚖️
8ShiningScorpioScorpion♏ 🦂
9OrderlyOphiuchusSnake-wrestler⛎ 🐍🤼‍♂️
10StarsSagittariusArcher♐ 🏹
11CreatingCapricornGoat-Fish♑ 🐐🐠
12AnimalAquariusWater-bearer♒ 🚰
13PatternsPiscesFish♓ 🐟
Table showing the order of the Zodiac Constellations, their names, descriptions, and emojis

Memorize the Constellations of the Zodiac in order

This mnemonic (memory device) can help you remember the correct order of the constellations of the Zodiac. This is the best way to memorize the order of the constellations of the Zodiac. It starts with Aries and ends with Pisces.

“All the great constellations look very lovely; shining, (orderly) stars creating animal patterns.”

Alex Davo (original – orderly added by DC)

This sentence is good too – it’s a little bit more romantic.

“A time gone, cowboys loved viewing little stars, (oh) so cold and pretty.”

– Terry Johnson (original – oh added by DC)

Why does the Zodiac constellations list start with Aries?

When astrology was invented it was the same activity as astronomy – observing and cataloging sky objects and their locations) but over the years the two practices have become very different. Astrology is now concerned with how the movement of the skies affects humans while astronomy has become a science. Scientists build knowledge to make predictions about physical events.

During early astrology/astronomy times, the most important thing about the study of the stars was to know where the Sun, Moon, planets, and other solar system objects were located in relation to the steady, orderly background of stars.

Why does the order of the Zodiac constellations read right to left?

The Sun moving “through” Aries into Taurus over a month. Each frame of the animation is about 3 days.

The Sun, Moon, and planets seem to move “through” these 13 constellations in order through the year. Starting with Aries, let’s follow the movement of the Sun against the backdrop of the steady stars. The next constellation that the Sun “moves into” is Taurus. Taurus is to the east (left) of Aries! The Sun appears to move into the next Zodiac constellation about once a month.

We know that the Sun is not moving – that it only appears to move through the sky – and that it is the Earth’s orbital motion that is creating this apparent movement.

Why did we add Ophiuchus to the original 12 Zodiac constellations?

Ophiuchus is a constellation, not an astrology “sign.” However, it is an official constellation that intersects the ecliptic. So, while astrologers do not consider this a Zodiac sign, astronomers include it because the constellation is located on the ecliptic.

The Ecliptic is a path in the sky that solar system objects follow

The solar system objects move generally west-to-east in a small band of the sky – this band of sky is called the ecliptic. All the Zodiac constellations are “on” the ecliptic and all the Sun, Moon, planets and other solar system objects move along the ecliptic over time.

There is another line in the sky called the celestial equator that is an imaginary line the rises from the equator of the Earth. The celestial equator and the ecliptic intersect at a “location” in the sky.

Right now in 2020 that intersection location is “in” the constellation Pisces.

The thin, diagonal line that connects the Zodiac constellations is called the ecliptic. This image shows the ecliptic intersecting with the celestial equator.

However, when astrology was created this intersection point was “in” the constellation Aries.

This image shows the intersection of the ecliptic with the celestial equator in the year 100 BCE.

This was known as the “First Point of Aries.” Astronomer Guy Ottewell writes about this imaginary point in the sky on his website UniversalWorkshop.

Summary

You can learn the order of the Zodiac constellations by using the mnemonic device shown in this article. There is a pathway in the sky that the solar system objects seem to follow. It is called the ecliptic. The Zodiac constellations are the 13 constellations lined up in the sky “on” this imaginary line.

The order of the Zodiac constellations is made because of the way the Sun, Moon, and planets seem to move east-to-west past these constellations in order during the year.

We start the Zodiac names list with Aries because the Zodiac constellations were first named thousands of years ago. At this time, the ecliptic intersected the celestial equator “in” the constellation Aries.

Galaxy Horizon – 4/20 at Midnight

On April 20th (4/20) at midnight Earth’s horizon (in northern latitudes) lines up perfectly with the plane of the entire Milky Way galaxy. The galaxy “wraps around” our view of the sky and we can see into and through the plane of the galaxy.

Starinastar.com galaxy horizon visualization. Shows the galaxy plane lined up with the local horizon at midnight on April 20th. This happens every year.
The Milky Way galaxy lines up perfectly with your local horizon view on April 20th (4/20) at midnight each year.

At this moment when you look out around you at the horizon, you are looking into the plane of the Milky Way galaxy.

How to See the Milky Way Galaxy Plane

Look southward (and a little bit east) and you are looking toward the center of the galaxy. Look northward (and a little bit west) and you are looking toward the outer edges of the galaxy.

Why does the galaxy line up with the horizon?

Each year on 4/20 the galaxy lines up with the horizon – an “event” I call the Galaxy Horizon. In fact, this “event” occurs every day! It’s just an interesting coincidence that the alignment happens on 4/20 at midnight. Each day the galaxy lines up again with the horizon but it happens 4 minutes earlier.

Earth Map in the Sky

Earth Map in the Sky – Landforms as Constellations

Learn how to see the map of Earth in the starry sky.

Stars help us find our way. Stars are like a giant map in the sky that tells us where we are on the surface of the Earth. Sailors use them as a “map” to navigate the world. For thousands of years, the stars were stationary markers of latitude and longitude.

We are going to learn to map something new onto the sky: locations on the Earth! We can create an exciting new set of “constellations” out of the shapes of the continents on the Earth.

We live on a sphere so we can see half of the sky (a hemisphere) at any one moment. It’s easy to imagine half the Earth mapped onto half the sky. Keep reading to learn how.

A new way to experience life on a sphere. It’s an Earth map projected onto the starry sky. Image created by: Daniel Cummings

Zenith Stars

Wherever you are on the Earth, when you look straight up (toward your zenith), you might see one star, but there are a bunch of other stars within view. All of the stars you see in the sky are directly overhead some other place on the Earth. Every place on Earth has their own set of stars directly overhead – their “zenith stars.”

Look up at any star in the night sky; that star is directly over some place on Earth. There are hundreds of “faraway zeniths” up there.

World Zeniths – See the Map of the Earth in the Sky

Every star maps to a location on Earth and every location on Earth maps to a star.

If you live in the western hemisphere, you can learn to look up and “see” the land borders of the North American and South American continents visible, projected into the sky like a giant painting on a curved ceiling. You can learn to see even more landforms in the sky – you can learn to see the entire western half of the Earth projected in the sky.

Visualize Countries in the Sky

We can learn to see country outlines in the sky. The key is to imagine yourself at the center of the Earth looking out into space “through” a translucent Earth surface.

Here is a good way to visualize these countries-in-the-sky even when you are on the surface. Imagine that you can look up and see your location at the zenith.

When I do this, I see southern New York state, Long Island jutting out into the water like a long pier, and the wide Hudson River emptying past New York City. Eastward is the dark expanse of the Atlantic Ocean and low on the eastern horizon are the countries of Europe and West Africa.

Westward in the sky, I can see the outline of the west coast of the US. Then, there is a big blank space of the Pacific Ocean and a spot near the western horizon that is Hawaii.

The Map of the Earth in the Sky is Reversed

Map of Earth landforms as they map to the starry sky. Map is reversed because it is projected into the sky. The places named at the cardinal directions (N, E, S, W) are the locations where New York horizon stars are zenith stars. Image created by: Daniel Cummings

There is one odd thing about the map as you see it in the sky… it’s reversed – as if seen in a mirror! This happens because we project the map lines outward into space toward the stars. When we look at the map this way it’s as if we are “inside” the Earth looking outward.

The map of the USA covers about 58˚ of sky from east-to-west. 58˚ is about 2x pinky-to-thumb (spread out all your fingers of both hands and touch thumbs). Your left pinky tip should be on your zenith. If you are in New York or somewhere on the east coast, the right pinky tip will indicate the approximate western edge of the USA.

Physical Astronomy – Stars Map to Places on Earth

Physical Astronomy Activity Instructions to learn to see the Map of the Earth in the Sky. Faraway Zenith stars help us visualize what it is like to live on the surface of a sphere. Image created by: Daniel Cummings

Learn to see the zenith map in your sky using this Physical Astronomy technique.

Exercise 1: face south and point high in the sky.

Face south. Then, reach both hands straight up over your head and point above your head with both pointer fingers. You are pointing at your zenith. Now, bring both arms down until they are pointing one due east and one due west. You are pointing at two points in the sky that are zeniths for someone else.

When I do this exercise in New York, my left hand (the eastern) points at a spot in the starry sky that is the zenith star for someone in the country of Nigeria in West Africa. This is a location on the globe that is 6 time zones east. My right hand (the western) points at a spot in the sky that is the zenith for someone in the island state of Hawaii in the middle of the Pacific Ocean. This location is 6 time zones west of New York.

So, when I look at the eastern horizon sky I am looking at the starry sky that is already directly above a place 6 time zones ahead of me. I am looking at someone else’s zenith stars.

Exercise 2: Repeat exercise 1. But this time, face east.

Face east, point up. Now, bring your arms down and point toward the north and the south directions. This time your right hand points south and your left hand points north. Your right hand points at a spot in the sky that is over the city of Cuzco, Peru (the closest city to Machu Pichu) and your left hand points to sky that is over Yekaterinburg, Russia – the 4th largest city in Russia.

Secret! You Can See a Star That Another Person Can’t

If you do this physical astronomy exercise right after sunset, the eastern and southern zenith locations are in night, but the western and northern sky points are over Earth locations that still have daytime.

This means that you can see the star that is at their zenith, but they cannot see that star. For example, Seattle still has 3 hours of sunlight left in their day so stars are invisible behind blue sky. The city of Yekaterinburg is on the opposite side of the world and just after sunset in New York it faces the Sun and has a bright daytime sky!

We are on the night time side of the Earth and we can see the current zenith stars of Seattle and Yekaterinburg – but people who live in these cities cannot see them! They have to wait to rotate to the night time side of the Earth to see stars.

The Math – How High Up is the Zenith Map?

Guy Ottewell’s illustration from Astronomical Companion (page 8). This schematic shows how we experience the celestial sphere – the array of stars in the sky. It shows zenith, cardinal direction points, the meridian, the celestial equator, the ecliptic, and the viewer – you, in England – sitting on the globe at latitude 40˚ north, looking up at the sky. Credit: © 2016 Guy Ottewell – UniversalWorkshop.com – used with permission.

Project an imaginary map of the Earth into the sky. The map has to be the correct size so that when it is viewed from a distance it “covers” the same distances.

If a map is too close, it is just the same size as the territory. So, we have to choose the correct distance to project the zeniths. As the zenith map “projector screen” moves away from the Earth we see more of the borders of the Earth. But, at some point the distance of the map corresponds exactly to the faraway zeniths.

Our question is: “How far away from the Earth do you have to be so the landforms (like the continents) have an angular diameter that is equivalent to their “actual size” in the sky?” How far away does our imaginary zenith map USA (about 3000 miles wide) image have to be to cover 58 degrees of arc in the sky?

To answer this we need math.

The Zenith Map Distance from Earth

Earth map showing close up of Algol passing over New York City while Gorgonea Tertia approaches Washington DC. Almach is the Zenith Star somewhere near Chicago, IL. The Earth’s rotational speed at this latitude makes the stars appear to travel a little bit faster than the speed of sound. They will be Zenith Stars for a location about 800 miles west in 1 hour. Image created by: Daniel Cummings

The Earth is approximately 24,901 miles in circumference at the equator. If we can see half the sky from any point on the Earth, then we can “see” half the Earth projected onto the sky by the zenith map. That means that for 180˚ of sky we can “see” about 12,450 miles of the Earth’s surface projected into space. 12,450/180 = 69 miles. When 1 degree of arc spans 69 equatorial miles the image is “at” the correct distance.

1 Degree of Sky equals 69 Miles

So, at the equator every degree of sky covers about 69 miles in every direction. As you go towards the poles the longitude degrees (east and west) cover less and less zenith map distance, but the latitude degrees (north and south) always stretch 69 miles. Every 15˚ of sky equals about 1035 (69*15) miles.

The distance between your pointer finger and your pinky (when you hold your arm and hand stretched out in front of you) is 15˚ – so you are measuring about 1035 miles on Earth with that sky measurement. One pinky width is equal to 1˚, which is 69 miles of zenith map!

The Math – Inverse Tangent and Angular Diameter

There is a simple calculation that helps us determine how far away something needs to be to fill just 1˚ of the sky. Here we use just a tiny drop of trigonometry to discover the “tangent of 1 degree.”

The tangent of 1˚ is 0.017455. The inverse of something is when you divide 1 by the number you want to invert. So, the inverse of 0.017455 (1/0.017455) is 57.29. The inverse of the tangent of 1˚ helps us figure out the distance something has to be to appear to be 1 degree angular diameter.

This page explains how to calculate distance from a known angular size. “When an object’s distance is 57.29 times its size, it has an angular size of 1 degree.”

So, 57.29 * 69 miles = 3,953 miles away! This is how far away the “map” has to be to show you your hemisphere of the Earth map. 3,953 miles is higher than low Earth orbit (LEO) satellites (lower than 1200 miles); it’s closer than geosynchronous satellites (at about 23,000 miles); and it’s about 1/60 the way to the Moon.

So, imagine that the Earth map is projected onto a screen – an imaginary celestial sphere, shell-shaped – that is quite close to the Earth and encircles us. It shows us our Earthen landforms and the oceans beside, superimposed in the sky.

Summary

We live on a sphere. When we look at out night sky we are able to see stars low on our horizon that are visible directly above someone else – one-quarter the way around the around the world in all directions.

If you live within 6 time zones of someone that means that you share some “simultaneous sky.” Anyone living further than 6 time zones away sees a completely different sky – unless you can see circumpolar stars that dip under the North Star. That means that you can see countries past the North Pole and down the other side of the globe.

Your zenith is yours – it is unique and changing all the time. Not even someone standing right beside you shares your zenith. You can use this idea of the zenith stars to comprehend the vast and mysterious experience of life on a sphere.

References

A list of extreme geographic points in the USA – Wikipedia – https://en.wikipedia.org/wiki/List_of_extreme_points_of_the_United_States

Moon Phases Names – an easy way to remember

The 8 Moon Phases Names

Here are the “official” 8 Moon Phases in order:

  1. New – the new moon is not visible
  2. Waxing Crescent – the Moon starts growing
  3. First Quarter – the moon looks like half a circle
  4. Waxing Gibbous – still growing
  5. Full – we see the entire circle of the Moon lit up
  6. Waning Gibbous – the Moon starts shrinking
  7. Third Quarter – again only half a circle is visible
  8. Waning Crescent – the Moon is about to disappear
  9. New (again) – the new Moon is not visible 
The Moon Phases names in the correct order showing the progression from new moon, through waxing moons, to full moon, then back down through waning moons, to new moon again in a cycle
The Moon Phases in left-to-right order with the official names – you might sometimes see “last quarter” used where the correct name is “third quarter.”

Moon phase names – The Moon Hat 

The Moon Hat is no ordinary hat - it makes a great science gift - it teaches you how to remember the phases of the Moon.
The Moon Hat is a science gift for the curious. Precisely placed Moon phases “point” to the Moon in the sky and help you find it day or night.

Buy a Moon Hat (a great science gift made by Star In A Star – order today and get FREE shipping), you can learn all about the Moon phases every time you wear the hat. The Moon Hat is a scientific “moon-finder” instrument that helps you locate the Moon in the sky day or night.

The Moon Hat is one in a line of “Science Clothing – clothing that makes you smarter!” It was invented and is made and sold by Daniel Cummings – the owner of this website and the author of this blog.

Play with the Moon Phases in order from right to left

This is a “physical model” of the Moon’s phase changes. Move the mouse Right to Left.

Each day the Moon moves leftward (east) through the sky – for people looking at it from the northern hemisphere. As it moves through a 29.5 day orbit, the Moon grows and then shrinks again. It starts New, grows Full, then wanes to New again.

Move your mouse from right to left on these Moon Phase emojis to recreate the correct order of phases as the Moon moves in its orbit.

Remember the 8 Moon phases

The main Moon Phase cycle is very simple and symmetrical:

New -> WAXING -> Full -> WANING -> New.

Studying for a Moon Phases quiz?

You can shorten the Moon phase names to: “Never can quit getting food” = NCQGF

NCQGF = New, Crescent, Quarter, Gibbous, Full

Just remember that sequence of letters: NCQGF. That gives you the order of the waxing phases, then reverse it to get the waning phases: FGQCN. The good thing about this sequence of letters is that you just have to memorize it one way! During your Moon Phases quiz you can write it down and then reverse it.

FGQCN = Full, Gibbous, Quarter, Crescent, New

The list of 8 Moon phases to memorize

The Moon Phases happen in a cycle that repeats.

New, wax crescent, 1st quarter, waxing gibbous,
Full, waning gibbous, 3rd quarter, waning crescent,
New (again).

What is Waxing and What is Waning

Waxing = growing

Waning = shrinking.

You can remember wax and wane because wax is growing like putting layers of wax on something. Like in the old Karate Kid movie “wax on.”

A mnemonic – DOC – will help you learn the Moon phases names

Here’s a good way to remember the order of the Moon phases if you have to choose the phase name based on an image of the phase: DOC. 

The three letter word DOC is a good mnemonic for remembering the Moon phases names and how they grow first and then shrink. It’s a “shape-ronym” –  I have a feeling I just invented that name – it’s where the letter shapes help you remember something.

If the Moon phase is shaped like the letter D that means it is growing (waxing). If the Moon phase is shaped like the letter C that means it is shrinking (waning). If it’s shaped like the letter O – it is full: in between waxing (D) and waning (C).

You can remember that “light starts on the right” of the waxing crescent, then it grows to full, then shrinks to the crescent where “the only light left is on the left.”

Moon phases names in order make the shapes of the letters DOC in order - it's a good mnemonic to remember the phases of the Moon and whether it is waxing or waning

NOTE: if you are in the southern hemisphere the mnemonic is COD because the Moon is Upside Down.

Start – The Waxing Moon D

As soon as the growing (waxing) Moon becomes a Waxing Crescent Moon we can see that the shape of the lit up part of the crescent can make the capital letter D. As the Moon grows through to Waxing Gibbous phase it is still shaped like a capital D.

Middle – The Full Moon O

The Full Moon is shaped like a capital O.

End – The Waning Moon C

The waning phases make the shape like a capital C.

Moon Phases Names patterns

Here are a some interesting patterns in the Moon phases names.

  1. The cycles repeat – New to Full to New (again).
  2. The Moon grows (waxes) and then shrinks (wanes) again. Why doesn’t the Moon grow to a Full Moon and then just blink out and start again… or maybe it could stay the same shape all the time… so many possibilities… why does it grow and then shrink?
  3. The New Moon is the commonly accepted “beginning” and also the “end” of the cycle.
  4. Gibbous is a really weird word – it is from the Latin “hunch or hump.”
  5. There is a first and third quarter, but no 0th or 4th quarter.
  6. Wax and Wane are more weird, old words – they are words originally handed down from the ancient language Sanskrit that made their way through history to old German and finally to old English.

The Moon’s Missing Quarters, weird

What’s the deal with First Quarter and Third Quarter?

Astronomy names can be unusual sometimes. The Moon has a “First Quarter” and a “Third Quarter”… but it has no “Second Quarter” and no “Fourth Quarter” or “Zeroth Quarter.”

The Second Quarter would be the Full Moon but we don’t use that name. But, then what would the New Moon be called? Is it the Zeroth (0th) quarter or the Fourth (4th) Quarter? Is the New Moon the beginning or the end of the orbit? Based on the more common name it should be called the zeroth quarter because it is the “New” part of the orbital cycle. Zero = nothing and during the New Moon there is no Moon visible.

The Moon is at “First Quarter” but its shape is half a moon!

This is kind of strange too: the moon looks like a “half moon” two times during the moon’s cycle. It is a half moon as it grows (waxes) and becomes a half moon again when it shrinks (wanes). The moon is clearly showing half a moon.

Confusingly, astronomers actually call the “half moon” a “quarter moon.”

Regular people call it a “half moon” even though astronomers call it a quarter moon. We should all call the first quarter moon the “waxing half moon” and the third quarter moon the “waning half moon.” But, these are not common names at all!

Actually, I’d like to call the first quarter (waxing half moon) the “Earth’s tail moon” and the third quarter (waning half moon) the “Earth’s nose moon.” These names point out a neat fact about the Moon’s orbit – it crosses the Earth’s orbit twice a month – once at first quarter, then again at third quarter.

Anyway, why do astronomers call a half moon the quarter moon?

Astronomers use the quarters to talk about the orbit of the Moon and its location in the orbital path. The name “quarter” says “the Moon is a quarter of the way through its orbit now.”

The moon phases names are odd

How to remember the phases of the moon? Let’s face it, the Moon phases are named with really old words – the kind of words we don’t really use anymore, but we are stuck with them because the Moon is kind of important and we can’t just ignore it.

Here is a good way to think about the words tied to the phases of the Moon. These words describe 4 things: the “age” of the Moon, the apparent “shape” of the Moon, its direction of growth, and its location in its orbit around the Earth:

Age, Shape, Growth, Orbit

These words describe the “Age” of the Moon: new moon, quarter moon,

These word describe the “Shape” of the Moon: half moon, full moon, gibbous moon and crescent moon.

These words describe the “Growth” of the Moon: waxing (growing) moon and waning (shrinking) moon,

This word describes the Orbit of the Moon: quarter moon.

The Moon moves in orbit

Each day, the Moon moves along an orbit that carries it around the Earth. It takes about 29.5 days for the Moon to make a complete trip from one New Moon to the next New Moon.

Each day the Moon moves about 1/27th of the sky: 360˚/27.5 days = 13.1˚ per day. This is about the distance between your index finger and your pinky held up at to the sky at arms length. The Moon moves eastward each day toward the dawn.

The Sun is always lighting up half of the Moon.

The light of the Sun always comes from one place – the Sun! Light from the Sun hits the Moon and lights up half of the Moon at all times.

However, it is not always the same half that we are looking at from Earth. The Moon shows us only part of its bright side for most of its 29.5 day orbit. It’s only during the Full Moon that we see the entire “half” illuminated Moon.

The Moon seems to change shape

The Moon changes phase because the Moon moves. As it moves, we see different light from the Sun reflecting off the Moon every second. The amount of light we can see changes every second as it moves through space around the Earth.

A fun and easy thing to watch with a telescope is to look at the Moon and see the Sun’s light casting changing shadows on the Moon.

Summary

This article summarized the names of the phases of the Moon and pointed out some interesting patterns. You learned a mnemonic (shape-ronym) device to help remember the order of the Moon phases.

10 ways to wear a Moon Hat

Wear the Moon Hat – have fun!

The Moon Hat is no ordinary hat. 

The Moon Hat keeps your head warm – yes!  And, every day it gently reminds you to be curious about the Moon. It reminds you to observe what usually stays hidden. It reminds you to #doscienceeveryday.

There are many ways to wear a Moon Hat. You can wear the Moon Hat in at least 10 different ways. The Moon Hat is made of soft stretchy fleece with small embroidered Moon phase images placed all around the brim.

The Moon Hat fabric is flexible and foldable.

10 ways to wear the Moon Hat

  • Moon Finder – where is the Moon right now
  • Phase Reminder – what is the Moon phase right now
  • Hidden Moon outside – hide the moons outside
  • Hidden Moon inside – hide the moons inside
  • Tidal Shores no tag – longshoreman style
  • Tidal Shores show tag – longshoreman style
  • Moon Slouch – Moon Finder, pull the fleece backward
  • Moon Beret – Moon Finder, pull the fleece forward
  • Moon Disk – Hidden Moon inside, show one embroidered disk
  • Moon Peeker – Hidden Moon inside, peek one embroidered disk
  • Halfsies (Bonus #11) – Hide half the phases, wear the hat straight

#1 – The Moon Finder

The Moon Hat style The Moon Finder. This is the standard style for wearing the Moon hat. The phases are oriented in the correct way and you can face the Sun and find the Moon using the Moon Hat moon phase images.

The standard way to wear the Moon Hat with the new Moon image in front. This creates the model of the Moon, Earth, Sun relationship and helps you understand how the motions of the Moon create the phases that we see from Earth.

Get the current Moon phase. Put the hat on with the New Moon image on your forehead. Face the Sun. Now, all of the Moon phase images point to where the Moon is in the sky. Amazing!

#2 – The Phase Reminder

The Moon Hat style The Phase Reminder This is another standard style for wearing the Moon hat. The current phase is oriented to the front and you can face the Moon and find the Sun using the Moon Hat New Moon phase image.

This everyday style is for people who want to remind themselves of the phases of the Moon and how they change over the 29 and a half days of the cycle. Just choose a Moon phase and put it at the front.

This is a subtle way to keep track of the Moon phases and learn their sky location. Before you put on the hat, pause for a second and consider which phase to wear. And, it doesn’t feel like a Moon phase quiz – it’s fun to put your thinking cap on!

#3 – Hidden Moon outside

Man wearing the Moon Hat hiding all the embroidered images of the Moon Phases. Sometimes you just want to wear a cap.

Don’t want any Moon phases to show? Just fold up the brim toward the outside of the hat and all of the Moon phase images disappear.

Sometimes a hat is just a hat.

#4 – Hidden Moon inside

Moon phase images are all hidden by folding the brim of the Moon Hat inside the hat. It gives a slightly exotic look to the cap.

Another way to hide the Moon phase images… tuck the brim of the Moon Hat towards the inside. All the Moon phase embroidery is now hidden and you have a sleek cap.

Looking for a unique style? The Moon Hat is flexible.

#5 – Tidal Shores no tag

The Moon Hat style the Tidal Shore No Tag - the hat starts inside out and the brim is folded up to reveal the images. This is another standard style for wearing the Moon hat. The New Moon image is oriented to the front and you can face the Sun and find the Moon using the Moon Hat New Moon phase image.

This is the longshoreman style. Turn the Moon Hat inside out and then fold the brim outward. The brim should be wide enough to both show the Moon phase images and hide the instruction tag.

A close-fitting style that uncovers your ears.

#6 – Tidal Shores show tag

The Moon Hat style the Tidal Shore Show Tag - the hat starts inside out and the brim is folded up to reveal the images. This is outre style for wearing the Moon hat because the tag is showing. The Full Moon image is oriented to the front and you can face the Full Moon and find the Sun using the Moon Hat New Moon image.

Just like the Tidal Shores no tag, but the brim of the hat is folded thinly so that the tag is revealed. You can wear the tag on the side, or the back, or if you are feeling daring, on the front!

This style makes a strong statement – show off the instruction tag.

#7 – Moon Slouch

Man wearing the Moon Hat in slouch style. The hat is loosely bunched and then pulled backward to give a relaxed ring of Moon phase images that are carried above the ear.

This is the Moon Finder style, but pull the Moon Hat upwards to get some amount of fabric standing up away from your head and then pull it backward and flatten it for a sleek look

You can easily wear the Moon Hat pulled up above your ears.

#8 – Moon Beret

Man wearing the Moon Hat in beret style. The hat is loosely bunched and then pulled forward to give an intense ring of Moon phase images that are carried above the ear.

This is the Moon Finder style, but pull the Moon Hat upwards to get some amount of fabric standing up away from your head and then pull it forward and flatten it for an intense look.

Folding and bunching the fabric in the hat leads to a renaissance or jester look.

#9 – Moon Disk

A single Moon Phase image shows at the back of Man's head but hiding all the other phases.

The Moon Disk style starts with the Hidden Moon inside, but then you pull the embroidered disk of your favorite Moon phase and place it somewhere – it could be centered on your forehead or placed round the side of your head just behind the ear, or all the way at the back. It’s your choice.

This style lets you show an individual Moon image disk.

#10 – Moon Peeker

This is the same as the Moon Phase disk, but more discreet. Just a tiny Moon phase image disk peeks out from just in front of the right ear.

This style is the same as the Moon Disk, but pull the Moon phase under the fabric of the brim until it is just peeking out. This style looks particularly good when the disk is just in front of your left or right ear.

This look makes a sly statement.

#11 – Halfsies 

Half the Moon Hat brim is folded upwards to hide a set of embroidered moon phase images. Hat is adjusted to make it look symmetrical.

Fold down half the Moon Hat brim to hide 4 of the phases, then adjust, and angle the hat so that it looks like it is sitting flat on your head.

An alternative way of hanging your hat.

Go out and play with the Moon Hat

This is a fun and flexible bit of fabric with lots of science and a mountain of style potential. Hide and show the Moon phase images, fold and flex the fabric. Get outside and get curious about the Moon and its motion.

Feel the Earth spin

Many people ask “Why can’t I feel the Earth spinning?” Or “Why don’t we feel the rotation of the Earth?”  The answer is that the Earth is so large and we are so small in comparison that we just get carried along for the ride. 

We humans are tiny so we don’t notice that everything on Earth moves along with us. Until we look up and we see the Sun speeding through the sky – then the questions start to fly: “Why does the Sun move across the sky?”, “How big is the Earth?”, “How fast is the Earth spinning?”

If the Earth is spinning why can't I feel it? The Earth is Gigantic. Humans are tiny.
Q: If the Earth is spinning why can’t we feel it? A: The Earth is gigantic and we are tiny.

It’s hard to imagine just how large the Earth is and just how fast it is carrying us around in its daily motion. How fast is the earth spinning?

You are about to learn the answer and learn how to experience this speed!

We are too small to see the illusion

The Earth spins at about 1000 mph (1609 kph) at the equator. But we can’t feel it. This illusion of non-motion happens for several reasons:

  1. Because the Earth is enormous compared to us, and
  2. Everything around us moves in the same direction and speed, and 
  3. Our inner ear is not sensitive enough to feel the gradual changes in momentum caused by Earth’s constant turning.

Imagine riding in a fast car that has no windows. The car cruises on a smooth highway at 100 kph (62 mph). Inside the car we chat with our friends, the seats are comfortable, and maybe a hot drink sits placid in a cup holder. We don’t feel the motion at all unless the car turns or speeds up or slows down.

Everything seems to be staying still but this stillness is an illusion. All of this stuff in the car is moving along with us at the same speed. But, if you could open a window in the car you would see the motion of the other objects not in the car.

The sky is our open window to find those other objects that are not “on the Earth.” We will use them to explore the Earth’s speed and movement.

Motion senses don’t feel the motion

Another reason that we can’t feel the Earth spinning is because our sense of balance. We get this sense from organs of the inner ear. We know what it feels like to move. We can feel a car accelerate and turn – but these sense organs don’t help us feel the Earth’s changes in speed and constant turning.

It’s easy to feel and then believe that the Earth stays still and everything else moves around us; the Earth doesn’t seem to be moving. The idea of a moving Earth seems preposterous. It’s no wonder it took humans so long to figure out that the Earth is spinning and moving!

However, you can learn a surprising way to feel the rotation of the Earth – and it has to do with the speed of sound. You can “feel the Earth spin under your feet” and all it takes is a little bit of imagination.

Speed of sound is the speed of day

The speed of sound in air is 1235 kph (767 mph). This is really fast, but it is still a visible and imaginable speed. 

The speed of the Earth’s rotation at the equator is faster than the speed of sound! But, because of the Earth’s shape, the Earth’s rotation speed is exactly equal to the speed of sound at two latitudes on the Earth: 42.97 North and 42.97 South.

What does this mean for you and your approach to physical astronomy? You have to train your brain to see the speed of sound, then you will be able to feel the Earth spinning. You will understand that the speed of sound is the speed of day.

7 ways to see the speed of sound

We can train our brains to “see” the speed of the Earth’s rotation (I’ve named this speed the “Speed of Day“). This is possible because “the speed of sound = the speed of Earth spinning.” 

Lightning and thunder can help you see the speed of sound.
You see lightning before you hear thunder because of the speed of sound. Credit: FreePhotos
  1. The fastest plane you’ve ever seen is traveling a bit slower than the speed of sound. Imagine the fastest jet plane you have ever seen. Unless you were watching a fighter jet, that jet was not going at the speed of sound. Commercial jet planes travel about 250-350 mph below the speed of sound.
  2. Echoes, echoes, echoes… The speed of sound can be heard and easily visualized by exploring sound echoes that bounce off walls, fences, hillsides, and other objects.
  3. Large fields. Go to a large field (as big as a football field or bigger) with a friend and ask them to clap. You will see your friend’s hands clapping and then hear the clap.
  4. Stadium concerts. You can experience the speed of sound at big stadium concerts where you can see the drummer hit the drums but the sound is not in synch with what you see.
  5. Lightning and Thunder. You can feel the speed of sound when you see the flash of distant lightning and you don’t hear the boom of thunder for several seconds. Every 5 seconds is about 1 mile.
  6. Fireworks. You can witness the speed of sound when you are watching fireworks and you hear the bang of the explosion after you see the light of the explosion.
  7. Videos. Finally, there are several good videos online that can help you visualize the speed of sound (links below – includes a clever piece from the Exploratorium in San Francisco).

The speed of rotation of the Earth

How fast is the Earth spinning? Once you have a clear idea of how fast sound goes, you can get a clear idea of how fast the Earth is spinning – and by experiencing this speed you can easily imagine just how incredibly large the Earth is.

A gigantic bell rings, “Races the day”

The Earth's surface spins at the speed of sound at 43 north and 43 south latitude.
Bell, Sun, Mountain – the speed of sound is the speed of day. Credit: vasocardin

One way of visualizing the speed of the Earth’s rotation is to imagine that a gigantic bell rings each time the Sun enters a new time zone. Imagine that there is no sound loss over distance and the sound of that bell can be heard across the whole time zone (up to 1000 miles).

When this bell rings, the sound takes time to travel. It will travel at the speed of sound: 767 miles per hour.

Sound = 767 miles / hour

Bangor, ME and Detroit, MI – two American cities on opposite ends of the eastern US timezone – are 1183 km (735 miles) apart. The sound of our imaginary bell takes about 1 hour to travel between these cities.

Earth surface = 767 miles / hour

Since these cities are near 42.97 N latitude, the Earth takes about 1 hour to spin underneath the Sun.

Wonder why we can't feel the Earth spinning? The Earth is huge and humans are tiny. The Earth's surface spins at different rates depending on what latitude you are living at.
Why can’t we feel the Earth spinning when it is moving faster than the speed of sound?

Sound, which seems quite fast, is actually slow enough to “see” it moving. Once you can see the speed of sound you have seen the speed of the surface of the Earth.

Summary

The Earth rotates once per day. People at the equator are moving at faster than the speed of sound, people near the poles are moving slower than the speed of sound. People living at latitude 42.97 N and 42.97 S are moving at exactly the speed of sound.

References

Editor’s Note: Credit goes to Bob Berman (aka SkyManBob) for first pointing out the latitude/speed of sound correspondence to me. I first learned about this idea in his fantastically engaging book Zoom – How Everything Moves. It has a footnote in Chapter 5 that says people at Coney Island are moving at 795 mph – just over the speed of sound. It got me wondering… how can people experience this speed? The result is this article. Thanks, Bob! 

Editor’s Note: Another Bob (aka AstroBob) gets credit for helping me refine this article with insights about our common perception of motion.

List of cities at 43˚N latitude.

Calculations showing speed of rotation at different latitudes on the surface of the Earth.

Video showing how to use your video camera to measure the speed of sound – good science fair project!

Video by the Exploratorium visualizing the speed of sound in a very creative way – Clapping Speed of Sound.

A visualization of the Earth’s surface rotation speed at each latitude.

A general audience article discussing how we experience the motion of the Earth.

How can I see Venus?

You can see Venus in the sky at two times and locations:

  • in the early evening, shortly after sunset in the west or
  • the early morning, shortly before sunrise in the east. 

Venus orbits the Sun and moves from evening sky to morning sky and back again over the course of about 18 months. Venus makes beautiful sweeping motions in the sky that reveal secrets of the solar system.

See Venus, see the plane of the solar system

Solar system plane
The planets all orbit the sun in the same plane. Image not to scale.

All the planets in the solar system orbit the sun. All of the orbits line up in neatly nested concentric rings. And all of the rings are lined up with each other as if they are placed on a single surface together.

The orbits are all in the same plane. It’s like they are all marbles circling around the sun on the same giant plate. This is called the “ecliptic” and it is visible in the sky if you know how to find Venus.

Intersecting space planes

The “space plane” is not an airplane

The “plane” is a tool you can use to see the way things move in space. This “plane” is not an airplane, but a flat slice of space.

Here is an image of two intersecting planes. Imagine the blue plane is the earth’s surface and the brown plane is up-and-down from ground to sky.

Each object (and movement) in space creates a “plane,” an imaginary slice through physical space. The blue “plane” above looks like the surface of a pond, lake or ocean. A wall or roof of a house is a plane. A dinner plate is a plane. Stretch your arms out and spin in a circle and you have created a plane with your arms.

There are planes in space everywhere.

Your own personal space plane

You create a plane with your vision and balance. You can imagine a flat surface like the surface of a pool of water and your eyes are just above the waterline. This surface moves and tilts when you move your head.

Your head has two eyes that define your plane of vision. Also, your body is oriented to gravity because of your sense of balance – the “personal horizon” is the first plane for you to orient to. Your body naturally coordinates your visual sense with your sense of balance and gives us the sense of being located level on a surface. This is the “sense of horizon.”

A new horizon – choose a plane!

To get good at Physical Astronomy, we have to learn to coordinate our main “personal horizon” plane with other planes of the earth, moon, solar system, galaxy, and universe.

The earth for instance, has a lot of planes, the range of latitudes, the north and south poles, the Arctic and Antarctic circles, the equator, the tropics, a range of longitudes, the prime meridian, the international date line, the ecliptic, the galactic plane and more.

To keep things simple, let’s focus on just one other plane for now: the plane of the solar system. A wonderful thing will happen when you learn to link the plane of vision with the plane of the solar system. It’s pretty easy to do, and it’s a skill that gets better with practice.

The key to linking vision and solar system planes is to know that the plane of the solar system is visible as the ecliptic. One easy way to see the plane of the solar system is to see the bright inner planet Venus.

See Venus see the orbit of Venus in the western sky just after sunset. See how the line from Venus to the Sun defines the ecliptic.
See Venus and you can see the orbit of Venus

See Venus and the Orbit of Venus

Venus is closer to the Sun so we are able to see its entire orbit. Actually, we can’t quite see the entire orbit because sometimes it goes in front of the sun and sometimes it goes behind the sun.

We can see Venus in the early evening and in the early morning. Venus is visible in our sky when it is at the left and right extent of its orbit around the sun. We only see Venus in the sky when it is swooping around the left or right of the sun.

If you want to see the orbit of Venus and see the plane of the solar system you can do it! All you have to do is imagine a line connecting Venus to the Sun.

If you are looking at Venus early in the morning before sunrise or early in the evening before sunset, the process is the same. Imagine a line connecting Venus to the Sun; this is the ecliptic. Venus’s entire orbit covers roughly 1/4 of the sky.

Summary

We learned about two main planes in space: your personal horizon (which changes as the Earth carries you around the Sun) and the plane of the solar system: the ecliptic. 

By learning to visualize these two space planes, we can begin to experience the extremely large dimensions of space.

References

Venus information from In the Sky.

Track the Sun

So you want to track the Sun?

Sunrise at Stonhenge - the ancient people who built this monument knew how to track the sun.
Sunrise at Stonehenge. Image credit: Pixabay.com

You don’t need to build your own Stonehenge. You can track the Sun’s position in the sky and learn how to do astronomy during the day!

Let’s get started with the basics of sun tracking. Here is everything you need to know to begin:

  • The Sun does not move; the Earth moves – it carries us under the Sun – it just looks like the Sun is moving.
  • The Earth moves every second of every day so the position of the Sun changes every second of every day.
  • Night is not the “Sun going away”, it is the Earth blocking the Sun.

One Day of Observation: the Sun rises and the Sun sets

Let’s start with a few easy observations about daytime. These are things you can notice just by waking up early one day before the Sun brightens the night.

The Sun starts the day for us on one side of the sky and ends the day on another side. At both of these times (sunrise and sunset), the Sun appears near to the ground – at the horizon.

During the middle of the day, the Sun appears to move “up” and across the sky and then back “down” again. In the middle of the day – at noon time – the Sun is high up in the sky, away from the ground.

Shadows change during the day

In the morning the Sun makes long shadows. At noon the Sun makes short shadows. At the end of the day, the Sun makes long shadows again. 

With a few simple tools you can measure the Sun’s position and shadows.

The Sun moves east to west

Over the course of one day, the Sun appears to move across the sky from east to west, rising to the highest point at noon. The Sun’s light shines on the Earth and makes shadows that move and change position and size. As the Sun “moves” through the sky, the shadows move on the ground.

Build a simple sundial, track the Sun

Sundial in Krk, Croatia showing the gnomon (stick) casting a shadow onto the marker at XII 12 o'clock noon. The shadow is shortest at 12 noon and allows people to track the sun.
Sundial – Krk, Croatia. The gnomon (stick) casts shadow on marker at XII 12 o’clock noon. Image credit: Pixabay.com

A sundial tracks the shadow of the Sun with an object that casts a shadow and time markings. For the simple sundial you can use a stick. The shadow of the stick (the stick on a sundial is called a gnomon) moves across the sundial. The shadow of the stick points to the time markings.

The simplest sundial is just a stick stuck in the ground with time markers nearby. The location of the stick’s shadow moves across the time markers throughout the day.

A stick, the Sun, another stick marks shadow. As simple as it gets. Image: Jim Champion

Mark the shadow’s position with any object (chalk drawing, a rock or another stick is a good choice). In the morning, the Sun appears low in the east and the shadow is long. The morning shadow points toward the west. At midday (noon) the Sun is at the highest point so the shadow falls in the middle and becomes short. At sunset, the shadow becomes long again – pointing to the east.

Paper Plate Sundial

A paper plate and a pencil make a simple sundial to track the Sun.
Push a pencil through a paper plate to make a sundial. Image Credit: Daniel Cummings

A paper plate with a pencil stuck through the middle makes a great moveable sundial! (Remember, when you move a paper plate sundial, you have to be careful to place it in perfect north-south alignment.)

Take this outside on a sunny day, then make a mark on the paper plate at the top of each hour. The shadow will move slightly each hour. The mark should go at the middle of the pencil shadow.

When you have completed this during one sunny day, you have made a sundial that can tell the time – roughly speaking!

An indoor sundial – the Sun Tracker

Most people think of sundials as something that you place outside. But, the Sun shines inside through windows. You can track the Sun through a window.

The Sun Tracker helps you track the Sun. It works as an indoor sundial that lets you decode the secrets of the motions of the Sun and Earth. It can track the Earth's rotation and orbit around the Sun.

An indoor sundial can help you track the Sun from the comfort of your own home! Do you have a sunny (or partly sunny) window? You can track the Sun and reveal the secrets of the Earth’s motion.

The Sun Tracker is an easy-to-use indoor sundial. Place the glistening window cling on any sunny window and then mark the position of the window cling’s shadow using one of the included stickers.

Repeat the next day or the next week at the same time of day. You will see a pattern emerging: the shadow cast by the Sun moves quite a bit each day.

If you are extra precise with recording the shadow at the same time of day, and you are able to do it for an entire year… you will see the Analemma.

The Sun Tracker is like a little bit of Stonehenge for your window.

Summary

Track the Sun with simple tools and you will reveal the motion of the Earth. There are two main motions of Earth, daily rotation and yearly orbit. Earth spins under the Sun each day and around the Sun in an orbit each year.

It is these two motions that make the Sun seem to move in the sky. Remember that the next time you are looking for the Sun – it’s where it always is… the Earth is what moves.